Optogenetic current in myofibroblasts acutely alters electrophysiology and conduction of co-cultured cardiomyocytes
Abstract Interactions between cardiac myofibroblasts and myocytes may slow conduction and generate spontaneous beating in fibrosis, increasing the chance of life-threatening arrhythmia. While co-culture studies have shown that myofibroblasts can affect cardiomyocyte electrophysiology in vitro, the e...
Guardado en:
Autores principales: | Geran M. Kostecki, Yu Shi, Christopher S. Chen, Daniel H. Reich, Emilia Entcheva, Leslie Tung |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e51090c71a604ba8a2fb67956066842a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology
por: Liang Zou, et al.
Publicado: (2021) -
A computational model of pig ventricular cardiomyocyte electrophysiology and calcium handling: Translation from pig to human electrophysiology.
por: Namit Gaur, et al.
Publicado: (2021) -
Fibrotic Remodeling during Persistent Atrial Fibrillation: In Silico Investigation of the Role of Calcium for Human Atrial Myofibroblast Electrophysiology
por: Jorge Sánchez, et al.
Publicado: (2021) -
OptoGap is an optogenetics-enabled assay for quantification of cell–cell coupling in multicellular cardiac tissue
por: Patrick M. Boyle, et al.
Publicado: (2021) -
OptoDyCE as an automated system for high-throughput all-optical dynamic cardiac electrophysiology
por: Aleksandra Klimas, et al.
Publicado: (2016)