Benchmarking microbiome transformations favors experimental quantitative approaches to address compositionality and sampling depth biases

Here, the authors use simulated quantitative gut microbial communities to benchmark the performance of 13 common data transformations in determining diversity as well as microbe-microbe and microbe-metadata associations, finding that quantitative approaches incorporating microbial load variation out...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Verónica Lloréns-Rico, Sara Vieira-Silva, Pedro J. Gonçalves, Gwen Falony, Jeroen Raes
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/e544f190337b4f3d9572dcc00f19fd3d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e544f190337b4f3d9572dcc00f19fd3d
record_format dspace
spelling oai:doaj.org-article:e544f190337b4f3d9572dcc00f19fd3d2021-12-02T14:59:27ZBenchmarking microbiome transformations favors experimental quantitative approaches to address compositionality and sampling depth biases10.1038/s41467-021-23821-62041-1723https://doaj.org/article/e544f190337b4f3d9572dcc00f19fd3d2021-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23821-6https://doaj.org/toc/2041-1723Here, the authors use simulated quantitative gut microbial communities to benchmark the performance of 13 common data transformations in determining diversity as well as microbe-microbe and microbe-metadata associations, finding that quantitative approaches incorporating microbial load variation outperform computational strategies in downstream analyses, urging for a widespread adoption of quantitative approaches, or recommending specific computational transformations whenever determination of microbial load of samples is not feasible.Verónica Lloréns-RicoSara Vieira-SilvaPedro J. GonçalvesGwen FalonyJeroen RaesNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Verónica Lloréns-Rico
Sara Vieira-Silva
Pedro J. Gonçalves
Gwen Falony
Jeroen Raes
Benchmarking microbiome transformations favors experimental quantitative approaches to address compositionality and sampling depth biases
description Here, the authors use simulated quantitative gut microbial communities to benchmark the performance of 13 common data transformations in determining diversity as well as microbe-microbe and microbe-metadata associations, finding that quantitative approaches incorporating microbial load variation outperform computational strategies in downstream analyses, urging for a widespread adoption of quantitative approaches, or recommending specific computational transformations whenever determination of microbial load of samples is not feasible.
format article
author Verónica Lloréns-Rico
Sara Vieira-Silva
Pedro J. Gonçalves
Gwen Falony
Jeroen Raes
author_facet Verónica Lloréns-Rico
Sara Vieira-Silva
Pedro J. Gonçalves
Gwen Falony
Jeroen Raes
author_sort Verónica Lloréns-Rico
title Benchmarking microbiome transformations favors experimental quantitative approaches to address compositionality and sampling depth biases
title_short Benchmarking microbiome transformations favors experimental quantitative approaches to address compositionality and sampling depth biases
title_full Benchmarking microbiome transformations favors experimental quantitative approaches to address compositionality and sampling depth biases
title_fullStr Benchmarking microbiome transformations favors experimental quantitative approaches to address compositionality and sampling depth biases
title_full_unstemmed Benchmarking microbiome transformations favors experimental quantitative approaches to address compositionality and sampling depth biases
title_sort benchmarking microbiome transformations favors experimental quantitative approaches to address compositionality and sampling depth biases
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/e544f190337b4f3d9572dcc00f19fd3d
work_keys_str_mv AT veronicallorensrico benchmarkingmicrobiometransformationsfavorsexperimentalquantitativeapproachestoaddresscompositionalityandsamplingdepthbiases
AT saravieirasilva benchmarkingmicrobiometransformationsfavorsexperimentalquantitativeapproachestoaddresscompositionalityandsamplingdepthbiases
AT pedrojgoncalves benchmarkingmicrobiometransformationsfavorsexperimentalquantitativeapproachestoaddresscompositionalityandsamplingdepthbiases
AT gwenfalony benchmarkingmicrobiometransformationsfavorsexperimentalquantitativeapproachestoaddresscompositionalityandsamplingdepthbiases
AT jeroenraes benchmarkingmicrobiometransformationsfavorsexperimentalquantitativeapproachestoaddresscompositionalityandsamplingdepthbiases
_version_ 1718389235759710208