Benchmarking microbiome transformations favors experimental quantitative approaches to address compositionality and sampling depth biases
Here, the authors use simulated quantitative gut microbial communities to benchmark the performance of 13 common data transformations in determining diversity as well as microbe-microbe and microbe-metadata associations, finding that quantitative approaches incorporating microbial load variation out...
Guardado en:
Autores principales: | Verónica Lloréns-Rico, Sara Vieira-Silva, Pedro J. Gonçalves, Gwen Falony, Jeroen Raes |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e544f190337b4f3d9572dcc00f19fd3d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Temporal variability in quantitative human gut microbiome profiles and implications for clinical research
por: Doris Vandeputte, et al.
Publicado: (2021) -
mockrobiota: a Public Resource for Microbiome Bioinformatics Benchmarking
por: Nicholas A. Bokulich, et al.
Publicado: (2016) -
A Review of Benchmark Datasets and Training Loss Functions in Neural Depth Estimation
por: Faisal Khan, et al.
Publicado: (2021) -
Benchmarking DNA isolation kits used in analyses of the urinary microbiome
por: Lisa Karstens, et al.
Publicado: (2021) -
Analysis of compositions of microbiomes with bias correction
por: Huang Lin, et al.
Publicado: (2020)