Benchmarking microbiome transformations favors experimental quantitative approaches to address compositionality and sampling depth biases
Here, the authors use simulated quantitative gut microbial communities to benchmark the performance of 13 common data transformations in determining diversity as well as microbe-microbe and microbe-metadata associations, finding that quantitative approaches incorporating microbial load variation out...
Enregistré dans:
Auteurs principaux: | Verónica Lloréns-Rico, Sara Vieira-Silva, Pedro J. Gonçalves, Gwen Falony, Jeroen Raes |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e544f190337b4f3d9572dcc00f19fd3d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Temporal variability in quantitative human gut microbiome profiles and implications for clinical research
par: Doris Vandeputte, et autres
Publié: (2021) -
mockrobiota: a Public Resource for Microbiome Bioinformatics Benchmarking
par: Nicholas A. Bokulich, et autres
Publié: (2016) -
A Review of Benchmark Datasets and Training Loss Functions in Neural Depth Estimation
par: Faisal Khan, et autres
Publié: (2021) -
Benchmarking DNA isolation kits used in analyses of the urinary microbiome
par: Lisa Karstens, et autres
Publié: (2021) -
Analysis of compositions of microbiomes with bias correction
par: Huang Lin, et autres
Publié: (2020)