Iterative static modeling of channelized reservoirs using history-matched facies probability data and rejection of training image

Abstract Most inverse reservoir modeling techniques require many forward simulations, and the posterior models cannot preserve geological features of prior models. This study proposes an iterative static modeling approach that utilizes dynamic data for rejecting an unsuitable training image (TI) amo...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Kyungbook Lee, Sungil Kim, Jonggeun Choe, Baehyun Min, Hyun Suk Lee
Format: article
Langue:EN
Publié: KeAi Communications Co., Ltd. 2018
Sujets:
Q
Accès en ligne:https://doaj.org/article/e5822848121e49acad9a3a9f2630e358
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!