Metamodeling of the Energy Consumption of Buildings with Daylight Harvesting – Application of Artificial Neural Networks Sensitive to Orientation
Daylight harvesting is a well-known strategy to address building energy efficiency. However, few simplified tools can evaluate its dual impact on lighting and air conditioning energy consumption. Artificial neural networks (ANNs) have been used as metamodels to predict energy consumption with high p...
Enregistré dans:
Auteurs principaux: | Raphaela Walger da Fonseca, Fernando Oscar Ruttkay Pereira |
---|---|
Format: | article |
Langue: | EN |
Publié: |
SolarLits
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e5cfcd2176074507b5b5a1fa17a7e9fb |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Development of a Machine-Learning Framework for Overall Daylight and Visual Comfort Assessment in Early Design Stages
par: Hanieh Nourkojouri, et autres
Publié: (2021) -
Simulating the Impact of Daytime Calibration in the Behavior of a Closed Loop Proportional Lighting Control System
par: Aris Tsangrassoulis, et autres
Publié: (2021) -
Metamodels’ Development for High Pressure Die Casting of Aluminum Alloy
par: Eva Anglada, et autres
Publié: (2021) -
A User-Oriented Local Coastal Flooding Early Warning System Using Metamodelling Techniques
par: Déborah Idier, et autres
Publié: (2021) -
A COMPARATIVE STUDY ON DAYLIGHT PERFORMANCE OF KONYA MOSQUES BUILT IN ANATOLIAN SELJUK AND OTTOMAN PERIOD
par: Ayşıl Coşkuner Pamuk, et autres
Publié: (2020)