Hierarchical deep learning models using transfer learning for disease detection and classification based on small number of medical images
Abstract Deep learning is being employed in disease detection and classification based on medical images for clinical decision making. It typically requires large amounts of labelled data; however, the sample size of such medical image datasets is generally small. This study proposes a novel trainin...
Enregistré dans:
Auteurs principaux: | Guangzhou An, Masahiro Akiba, Kazuko Omodaka, Toru Nakazawa, Hideo Yokota |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e6d1ea699766437d95c7d3f7de66dd3d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
An improved deep learning model for hierarchical classification of protein families.
par: Pahalage Dhanushka Sandaruwan, et autres
Publié: (2021) -
Sequential transfer learning based on hierarchical clustering for improved performance in deep learning based food segmentation
par: Mia S. N. Siemon, et autres
Publié: (2021) -
Task independent transfer learning in EEG deep-learning classification tasks: Sex classification and anti-depressant response prediction
par: Hamish Binnie, et autres
Publié: (2021) -
Transfer learning for ECG classification
par: Kuba Weimann, et autres
Publié: (2021) -
A deep transfer learning approach for wearable sleep stage classification with photoplethysmography
par: Mustafa Radha, et autres
Publié: (2021)