A higher-order accurate difference approximation of singularly perturbed reaction-diffusion problem using grid equidistribution
This paper proposes a higher-order numerical approximation scheme to solve singularly perturbed reaction–diffusion boundary value problems. The proposed scheme is a combination of a fourth-order numerical difference method and classical central difference method applied on a non-equidistant grid. Th...
Enregistré dans:
Auteurs principaux: | Aastha Gupta, Aditya Kaushik |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e73f847ea7d24c98a5121ef5e71dbab5 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Multi-Objective Optimal Control for Uncertain Singularly Perturbed Systems
par: Lei Liu, et autres
Publié: (2021) -
Approximate Noether Symmetries of Perturbed Lagrangians and Approximate Conservation Laws
par: Matteo Gorgone, et autres
Publié: (2021) -
APPROXIMATION BY DISCRETE SINGULAR OPERATORS
par: Anastassiou,George A
Publié: (2013) -
Robust singular perturbation control for 3D path following of underactuated AUVs
par: Ming Lei, et autres
Publié: (2021) -
The Hankel Determinants from a Singularly Perturbed Jacobi Weight
par: Pengju Han, et autres
Publié: (2021)