Machine learning augmented predictive and generative model for rupture life in ferritic and austenitic steels
Abstract The Larson–Miller parameter (LMP) offers an efficient and fast scheme to estimate the creep rupture life of alloy materials for high-temperature applications; however, poor generalizability and dependence on the constant C often result in sub-optimal performance. In this work, we show that...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e76d63eb1627409782b344abe8ba2147 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|