Machine learning augmented predictive and generative model for rupture life in ferritic and austenitic steels
Abstract The Larson–Miller parameter (LMP) offers an efficient and fast scheme to estimate the creep rupture life of alloy materials for high-temperature applications; however, poor generalizability and dependence on the constant C often result in sub-optimal performance. In this work, we show that...
Guardado en:
Autores principales: | Osman Mamun, Madison Wenzlick, Arun Sathanur, Jeffrey Hawk, Ram Devanathan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e76d63eb1627409782b344abe8ba2147 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A machine learning aided interpretable model for rupture strength prediction in Fe-based martensitic and austenitic alloys
por: Osman Mamun, et al.
Publicado: (2021) -
Cryogenic toughness in a low-cost austenitic steel
por: Yuhui Wang, et al.
Publicado: (2021) -
Research on Microstructure Evolution of Deposited Metal of Low Nickel High Nitrogen Austenitic Stainless Steel
por: Yiming Ma, et al.
Publicado: (2021) -
INVESTIGATION OF THE EFFECT OF THERMOMECHANICAL PROCESSING ON MICROSTRUCTURE AND CORROSION RESISTANCE OF 321 AUSTENITIC STAINLESS STEEL
por: M. Salehi, et al.
Publicado: (2021) -
Strengthening control in laser powder bed fusion of austenitic stainless steels via grain boundary engineering
por: Hossein Eskandari Sabzi, et al.
Publicado: (2021)