Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities
Abstract The machine learning community has become alert to the ways that predictive algorithms can inadvertently introduce unfairness in decision-making. Herein, we discuss how concepts of algorithmic fairness might apply in healthcare, where predictive algorithms are being increasingly used to sup...
Enregistré dans:
Auteurs principaux: | Jessica K. Paulus, David M. Kent |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e7bd8bf7145c42bc85f9bf7ab9b5b39e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Artificial intelligence sepsis prediction algorithm learns to say “I don’t know”
par: Supreeth P. Shashikumar, et autres
Publié: (2021) -
Comparing machine learning algorithms for predicting ICU admission and mortality in COVID-19
par: Sonu Subudhi, et autres
Publié: (2021) -
New machine learning model predicts who may benefit most from COVID-19 vaccination
par: Leia Wedlund, et autres
Publié: (2021) -
A vital sign-based prediction algorithm for differentiating COVID-19 versus seasonal influenza in hospitalized patients
par: Naveena Yanamala, et autres
Publié: (2021) -
Deep-learning-based real-time prediction of acute kidney injury outperforms human predictive performance
par: Nina Rank, et autres
Publié: (2020)