Multiomic analysis on human cell model of wolfram syndrome reveals changes in mitochondrial morphology and function
Abstract Background Wolfram syndrome (WFS) is a rare autosomal recessive syndrome in which diabetes mellitus and neurodegenerative disorders occur as a result of Wolframin deficiency and increased ER stress. In addition, WFS1 deficiency leads to calcium homeostasis disturbances and can change mitoch...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e9ae24e4ded347729d7a31887a6ccfdf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e9ae24e4ded347729d7a31887a6ccfdf |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e9ae24e4ded347729d7a31887a6ccfdf2021-11-21T12:13:35ZMultiomic analysis on human cell model of wolfram syndrome reveals changes in mitochondrial morphology and function10.1186/s12964-021-00791-21478-811Xhttps://doaj.org/article/e9ae24e4ded347729d7a31887a6ccfdf2021-11-01T00:00:00Zhttps://doi.org/10.1186/s12964-021-00791-2https://doaj.org/toc/1478-811XAbstract Background Wolfram syndrome (WFS) is a rare autosomal recessive syndrome in which diabetes mellitus and neurodegenerative disorders occur as a result of Wolframin deficiency and increased ER stress. In addition, WFS1 deficiency leads to calcium homeostasis disturbances and can change mitochondrial dynamics. The aim of this study was to evaluate protein levels and changes in gene transcription on human WFS cell model under experimental ER stress. Methods We performed transcriptomic and proteomic analysis on WFS human cell model—skin fibroblasts reprogrammed into induced pluripotent stem (iPS) cells and then into neural stem cells (NSC) with subsequent ER stress induction using tunicamycin (TM). Results were cross-referenced with publicly available RNA sequencing data in hippocampi and hypothalami of mice with WFS1 deficiency. Results Proteomic analysis identified specific signal pathways that differ in NSC WFS cells from healthy ones. Next, detailed analysis of the proteins involved in the mitochondrial function showed the down-regulation of subunits of the respiratory chain complexes in NSC WFS cells, as well as the up-regulation of proteins involved in Krebs cycle and glycolysis when compared to the control cells. Based on pathway enrichment analysis we concluded that in samples from mice hippocampi the mitochondrial protein import machinery and OXPHOS were significantly down-regulated. Conclusions Our results show the functional and morphological secondary mitochondrial damage in patients with WFS. Graphical Abstract Video AbstractAgnieszka ZmyslowskaMiljan KuljaninBeata MalachowskaMarcin StanczakDominika MichalekAneta WlodarczykDagmara GrotJoanna TahaBartłomiej PawlikMagdalena Lebiedzińska-ArciszewskaHanna NieznanskaMariusz R. WieckowskiPiotr RieskeJoseph D. ManciasMaciej BorowiecWojciech MlynarskiWojciech FendlerBMCarticleWolfram syndromeProteomicsTranscriptomicsMitochondriaER stressMedicineRCytologyQH573-671ENCell Communication and Signaling, Vol 19, Iss 1, Pp 1-14 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Wolfram syndrome Proteomics Transcriptomics Mitochondria ER stress Medicine R Cytology QH573-671 |
spellingShingle |
Wolfram syndrome Proteomics Transcriptomics Mitochondria ER stress Medicine R Cytology QH573-671 Agnieszka Zmyslowska Miljan Kuljanin Beata Malachowska Marcin Stanczak Dominika Michalek Aneta Wlodarczyk Dagmara Grot Joanna Taha Bartłomiej Pawlik Magdalena Lebiedzińska-Arciszewska Hanna Nieznanska Mariusz R. Wieckowski Piotr Rieske Joseph D. Mancias Maciej Borowiec Wojciech Mlynarski Wojciech Fendler Multiomic analysis on human cell model of wolfram syndrome reveals changes in mitochondrial morphology and function |
description |
Abstract Background Wolfram syndrome (WFS) is a rare autosomal recessive syndrome in which diabetes mellitus and neurodegenerative disorders occur as a result of Wolframin deficiency and increased ER stress. In addition, WFS1 deficiency leads to calcium homeostasis disturbances and can change mitochondrial dynamics. The aim of this study was to evaluate protein levels and changes in gene transcription on human WFS cell model under experimental ER stress. Methods We performed transcriptomic and proteomic analysis on WFS human cell model—skin fibroblasts reprogrammed into induced pluripotent stem (iPS) cells and then into neural stem cells (NSC) with subsequent ER stress induction using tunicamycin (TM). Results were cross-referenced with publicly available RNA sequencing data in hippocampi and hypothalami of mice with WFS1 deficiency. Results Proteomic analysis identified specific signal pathways that differ in NSC WFS cells from healthy ones. Next, detailed analysis of the proteins involved in the mitochondrial function showed the down-regulation of subunits of the respiratory chain complexes in NSC WFS cells, as well as the up-regulation of proteins involved in Krebs cycle and glycolysis when compared to the control cells. Based on pathway enrichment analysis we concluded that in samples from mice hippocampi the mitochondrial protein import machinery and OXPHOS were significantly down-regulated. Conclusions Our results show the functional and morphological secondary mitochondrial damage in patients with WFS. Graphical Abstract Video Abstract |
format |
article |
author |
Agnieszka Zmyslowska Miljan Kuljanin Beata Malachowska Marcin Stanczak Dominika Michalek Aneta Wlodarczyk Dagmara Grot Joanna Taha Bartłomiej Pawlik Magdalena Lebiedzińska-Arciszewska Hanna Nieznanska Mariusz R. Wieckowski Piotr Rieske Joseph D. Mancias Maciej Borowiec Wojciech Mlynarski Wojciech Fendler |
author_facet |
Agnieszka Zmyslowska Miljan Kuljanin Beata Malachowska Marcin Stanczak Dominika Michalek Aneta Wlodarczyk Dagmara Grot Joanna Taha Bartłomiej Pawlik Magdalena Lebiedzińska-Arciszewska Hanna Nieznanska Mariusz R. Wieckowski Piotr Rieske Joseph D. Mancias Maciej Borowiec Wojciech Mlynarski Wojciech Fendler |
author_sort |
Agnieszka Zmyslowska |
title |
Multiomic analysis on human cell model of wolfram syndrome reveals changes in mitochondrial morphology and function |
title_short |
Multiomic analysis on human cell model of wolfram syndrome reveals changes in mitochondrial morphology and function |
title_full |
Multiomic analysis on human cell model of wolfram syndrome reveals changes in mitochondrial morphology and function |
title_fullStr |
Multiomic analysis on human cell model of wolfram syndrome reveals changes in mitochondrial morphology and function |
title_full_unstemmed |
Multiomic analysis on human cell model of wolfram syndrome reveals changes in mitochondrial morphology and function |
title_sort |
multiomic analysis on human cell model of wolfram syndrome reveals changes in mitochondrial morphology and function |
publisher |
BMC |
publishDate |
2021 |
url |
https://doaj.org/article/e9ae24e4ded347729d7a31887a6ccfdf |
work_keys_str_mv |
AT agnieszkazmyslowska multiomicanalysisonhumancellmodelofwolframsyndromerevealschangesinmitochondrialmorphologyandfunction AT miljankuljanin multiomicanalysisonhumancellmodelofwolframsyndromerevealschangesinmitochondrialmorphologyandfunction AT beatamalachowska multiomicanalysisonhumancellmodelofwolframsyndromerevealschangesinmitochondrialmorphologyandfunction AT marcinstanczak multiomicanalysisonhumancellmodelofwolframsyndromerevealschangesinmitochondrialmorphologyandfunction AT dominikamichalek multiomicanalysisonhumancellmodelofwolframsyndromerevealschangesinmitochondrialmorphologyandfunction AT anetawlodarczyk multiomicanalysisonhumancellmodelofwolframsyndromerevealschangesinmitochondrialmorphologyandfunction AT dagmaragrot multiomicanalysisonhumancellmodelofwolframsyndromerevealschangesinmitochondrialmorphologyandfunction AT joannataha multiomicanalysisonhumancellmodelofwolframsyndromerevealschangesinmitochondrialmorphologyandfunction AT bartłomiejpawlik multiomicanalysisonhumancellmodelofwolframsyndromerevealschangesinmitochondrialmorphologyandfunction AT magdalenalebiedzinskaarciszewska multiomicanalysisonhumancellmodelofwolframsyndromerevealschangesinmitochondrialmorphologyandfunction AT hannanieznanska multiomicanalysisonhumancellmodelofwolframsyndromerevealschangesinmitochondrialmorphologyandfunction AT mariuszrwieckowski multiomicanalysisonhumancellmodelofwolframsyndromerevealschangesinmitochondrialmorphologyandfunction AT piotrrieske multiomicanalysisonhumancellmodelofwolframsyndromerevealschangesinmitochondrialmorphologyandfunction AT josephdmancias multiomicanalysisonhumancellmodelofwolframsyndromerevealschangesinmitochondrialmorphologyandfunction AT maciejborowiec multiomicanalysisonhumancellmodelofwolframsyndromerevealschangesinmitochondrialmorphologyandfunction AT wojciechmlynarski multiomicanalysisonhumancellmodelofwolframsyndromerevealschangesinmitochondrialmorphologyandfunction AT wojciechfendler multiomicanalysisonhumancellmodelofwolframsyndromerevealschangesinmitochondrialmorphologyandfunction |
_version_ |
1718419159147085824 |