Detection of Exceptional Malware Variants Using Deep Boosted Feature Spaces and Machine Learning
Malware is a key component of cyber-crime, and its analysis is the first line of defence against cyber-attack. This study proposes two new malware classification frameworks: Deep Feature Space-based Malware classification (DFS-MC) and Deep Boosted Feature Space-based Malware classification (DBFS-MC)...
Guardado en:
Autores principales: | Muhammad Asam, Shaik Javeed Hussain, Mohammed Mohatram, Saddam Hussain Khan, Tauseef Jamal, Amad Zafar, Asifullah Khan, Muhammad Umair Ali, Umme Zahoora |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ea324eb47c8b4fd393023f7427e76be3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine-Learning-Based Android Malware Family Classification Using Built-In and Custom Permissions
por: Minki Kim, et al.
Publicado: (2021) -
Recent Advances in Android Mobile Malware Detection: A Systematic Literature Review
por: Abdulaziz Alzubaidi
Publicado: (2021) -
LSGAN-AT: enhancing malware detector robustness against adversarial examples
por: Jianhua Wang, et al.
Publicado: (2021) -
Fuzzy Integral-Based Multi-Classifiers Ensemble for Android Malware Classification
por: Altyeb Taha, et al.
Publicado: (2021) -
A Novel Monte-Carlo Simulation-Based Model for Malware Detection (<i>e</i>RBCM)
por: Muath Alrammal, et al.
Publicado: (2021)