Detection of Exceptional Malware Variants Using Deep Boosted Feature Spaces and Machine Learning
Malware is a key component of cyber-crime, and its analysis is the first line of defence against cyber-attack. This study proposes two new malware classification frameworks: Deep Feature Space-based Malware classification (DFS-MC) and Deep Boosted Feature Space-based Malware classification (DBFS-MC)...
Enregistré dans:
Auteurs principaux: | Muhammad Asam, Shaik Javeed Hussain, Mohammed Mohatram, Saddam Hussain Khan, Tauseef Jamal, Amad Zafar, Asifullah Khan, Muhammad Umair Ali, Umme Zahoora |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ea324eb47c8b4fd393023f7427e76be3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Machine-Learning-Based Android Malware Family Classification Using Built-In and Custom Permissions
par: Minki Kim, et autres
Publié: (2021) -
Recent Advances in Android Mobile Malware Detection: A Systematic Literature Review
par: Abdulaziz Alzubaidi
Publié: (2021) -
LSGAN-AT: enhancing malware detector robustness against adversarial examples
par: Jianhua Wang, et autres
Publié: (2021) -
Fuzzy Integral-Based Multi-Classifiers Ensemble for Android Malware Classification
par: Altyeb Taha, et autres
Publié: (2021) -
A Novel Monte-Carlo Simulation-Based Model for Malware Detection (<i>e</i>RBCM)
par: Muath Alrammal, et autres
Publié: (2021)