A Novel Data Augmentation Technique and Deep Learning Model for Web Application Security
Web applications are often exposed to attacks because of the critical information and valuable assets they host. In this study, Bi-LSTM based web application security models were developed in order to detect web attacks and classify them into binary or multiple classes using HTTP requests. A novel d...
Enregistré dans:
Auteurs principaux: | Hacer Karacan, Mehmet Sevri |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/eaf8645eb10b476b8d107ee7292c1a89 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
E-SFD: Explainable Sensor Fault Detection in the ICS Anomaly Detection System
par: Chanwoong Hwang, et autres
Publié: (2021) -
A Robust Framework for MADS Based on DL Techniques on the IoT
par: Hussah Talal, et autres
Publié: (2021) -
MEML: A Deep Data Augmentation Method by Mean Extrapolation in Middle Layers
par: Dongchen Liu, et autres
Publié: (2021) -
Self-Supervised Learning for Anomaly Detection With Dynamic Local Augmentation
par: Seungdong Yoa, et autres
Publié: (2021) -
Multi-View Data Augmentation to Improve Wound Segmentation on 3D Surface Model by Deep Learning
par: R. Niri, et autres
Publié: (2021)