Multi-Factor Regulation of the Master Modulator LeuO for the Cyclic-(Phe-Pro) Signaling Pathway in Vibrio vulnificus

Abstract LeuO plays the role of a master regulator in the cyclic-L-phenylalanine-L-proline (cFP)-dependent signaling pathway in Vibrio vulnificus. cFP, as shown through isothermal titration calorimetry analysis, binds specifically to the periplasmic domain of ToxR. Binding of cFP triggers a change i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Na-Young Park, In Hwang Kim, Yancheng Wen, Keun-Woo Lee, Sora Lee, Jeong-A Kim, Kwang-Hwan Jung, Kyu-Ho Lee, Kun-Soo Kim
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
R
Q
Acceso en línea:https://doaj.org/article/ebc8fdc1b34548bcb931318de56002b1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract LeuO plays the role of a master regulator in the cyclic-L-phenylalanine-L-proline (cFP)-dependent signaling pathway in Vibrio vulnificus. cFP, as shown through isothermal titration calorimetry analysis, binds specifically to the periplasmic domain of ToxR. Binding of cFP triggers a change in the cytoplasmic domain of ToxR, which then activates transcription of leuO encoding a LysR-type regulator. LeuO binds to the region upstream of its own coding sequence, inhibiting its own transcription and maintaining a controlled level of expression. A five-bp deletion in this region abolished expression of LeuO, but a ten-bp deletion did not, suggesting that a DNA bending mechanism is involved in the regulation. Furthermore, binding of RNA polymerase was significantly lower both in the deletion of the ToxR binding site and in the five-bp deletion, but not in the ten-bp deletion, as shown in pull-down assays using an antibody against RNA polymerase subunit α. In summary, multiple factors are involved in control of the expression of LeuO, a master regulator that orchestrates downstream regulators to modulate factors required for survival and pathogenicity of the pathogen.