Machine-learning approach expands the repertoire of anti-CRISPR protein families
CRISPR-Cas is a host adaptive immunity system and viruses harbor diverse anti-CRISPR proteins (Acrs). Here, the authors develop a random forest machine-learning approach to predict Acrs, identifying 2500 candidate Acr families, which expand the current repertoire of predicted Acrs by two orders of m...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ebeb6afe4a8347318cf5044cb7657ab8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ebeb6afe4a8347318cf5044cb7657ab8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ebeb6afe4a8347318cf5044cb7657ab82021-12-02T18:47:02ZMachine-learning approach expands the repertoire of anti-CRISPR protein families10.1038/s41467-020-17652-02041-1723https://doaj.org/article/ebeb6afe4a8347318cf5044cb7657ab82020-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17652-0https://doaj.org/toc/2041-1723CRISPR-Cas is a host adaptive immunity system and viruses harbor diverse anti-CRISPR proteins (Acrs). Here, the authors develop a random forest machine-learning approach to predict Acrs, identifying 2500 candidate Acr families, which expand the current repertoire of predicted Acrs by two orders of magnitude.Ayal B. GussowAllyson E. ParkAdair L. BorgesSergey A. ShmakovKira S. MakarovaYuri I. WolfJoseph Bondy-DenomyEugene V. KooninNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-12 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Ayal B. Gussow Allyson E. Park Adair L. Borges Sergey A. Shmakov Kira S. Makarova Yuri I. Wolf Joseph Bondy-Denomy Eugene V. Koonin Machine-learning approach expands the repertoire of anti-CRISPR protein families |
description |
CRISPR-Cas is a host adaptive immunity system and viruses harbor diverse anti-CRISPR proteins (Acrs). Here, the authors develop a random forest machine-learning approach to predict Acrs, identifying 2500 candidate Acr families, which expand the current repertoire of predicted Acrs by two orders of magnitude. |
format |
article |
author |
Ayal B. Gussow Allyson E. Park Adair L. Borges Sergey A. Shmakov Kira S. Makarova Yuri I. Wolf Joseph Bondy-Denomy Eugene V. Koonin |
author_facet |
Ayal B. Gussow Allyson E. Park Adair L. Borges Sergey A. Shmakov Kira S. Makarova Yuri I. Wolf Joseph Bondy-Denomy Eugene V. Koonin |
author_sort |
Ayal B. Gussow |
title |
Machine-learning approach expands the repertoire of anti-CRISPR protein families |
title_short |
Machine-learning approach expands the repertoire of anti-CRISPR protein families |
title_full |
Machine-learning approach expands the repertoire of anti-CRISPR protein families |
title_fullStr |
Machine-learning approach expands the repertoire of anti-CRISPR protein families |
title_full_unstemmed |
Machine-learning approach expands the repertoire of anti-CRISPR protein families |
title_sort |
machine-learning approach expands the repertoire of anti-crispr protein families |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/ebeb6afe4a8347318cf5044cb7657ab8 |
work_keys_str_mv |
AT ayalbgussow machinelearningapproachexpandstherepertoireofanticrisprproteinfamilies AT allysonepark machinelearningapproachexpandstherepertoireofanticrisprproteinfamilies AT adairlborges machinelearningapproachexpandstherepertoireofanticrisprproteinfamilies AT sergeyashmakov machinelearningapproachexpandstherepertoireofanticrisprproteinfamilies AT kirasmakarova machinelearningapproachexpandstherepertoireofanticrisprproteinfamilies AT yuriiwolf machinelearningapproachexpandstherepertoireofanticrisprproteinfamilies AT josephbondydenomy machinelearningapproachexpandstherepertoireofanticrisprproteinfamilies AT eugenevkoonin machinelearningapproachexpandstherepertoireofanticrisprproteinfamilies |
_version_ |
1718377714175442944 |