Translational learning from clinical studies predicts drug pharmacokinetics across patient populations

Systems pharmacology: predicting population pharmacokinetics in silico Physiologically based modeling together with Bayesian statistics allows the prediction of drug pharmacokinetics in specific patient populations. An interdisciplinary group of clinicians and computational scientists led by Dr. Lar...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Markus Krauss, Ute Hofmann, Clemens Schafmayer, Svitlana Igel, Jan Schlender, Christian Mueller, Mario Brosch, Witigo von Schoenfels, Wiebke Erhart, Andreas Schuppert, Michael Block, Elke Schaeffeler, Gabriele Boehmer, Linus Goerlitz, Jan Hoecker, Joerg Lippert, Reinhold Kerb, Jochen Hampe, Lars Kuepfer, Matthias Schwab
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Acceso en línea:https://doaj.org/article/ec1cdb4109a643779b3939519f2d8816
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ec1cdb4109a643779b3939519f2d8816
record_format dspace
spelling oai:doaj.org-article:ec1cdb4109a643779b3939519f2d88162021-12-02T11:42:12ZTranslational learning from clinical studies predicts drug pharmacokinetics across patient populations10.1038/s41540-017-0012-52056-7189https://doaj.org/article/ec1cdb4109a643779b3939519f2d88162017-03-01T00:00:00Zhttps://doi.org/10.1038/s41540-017-0012-5https://doaj.org/toc/2056-7189Systems pharmacology: predicting population pharmacokinetics in silico Physiologically based modeling together with Bayesian statistics allows the prediction of drug pharmacokinetics in specific patient populations. An interdisciplinary group of clinicians and computational scientists led by Dr. Lars Kuepfer from Bayer developed a generic workflow consisting of several consecutive learning steps where knowledge about both individual physiology as well as drug physicochemistry can be efficiently derived from plasma concentration profiles. The acquired information is then be used for the prediction of the pharmacokinetic behavior of a new drug candidate in a diseased population. This allows to simulate the variability in drug exposure virtually before starting clinical investigation in real patients in order to evaluate drug safety or efficacy through the simulation of virtual populations. Further development of this workflow could improve the safety of clinical development programs to assess the risk-benefit ratio of novel drug candidates in silico.Markus KraussUte HofmannClemens SchafmayerSvitlana IgelJan SchlenderChristian MuellerMario BroschWitigo von SchoenfelsWiebke ErhartAndreas SchuppertMichael BlockElke SchaeffelerGabriele BoehmerLinus GoerlitzJan HoeckerJoerg LippertReinhold KerbJochen HampeLars KuepferMatthias SchwabNature PortfolioarticleBiology (General)QH301-705.5ENnpj Systems Biology and Applications, Vol 3, Iss 1, Pp 1-11 (2017)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Markus Krauss
Ute Hofmann
Clemens Schafmayer
Svitlana Igel
Jan Schlender
Christian Mueller
Mario Brosch
Witigo von Schoenfels
Wiebke Erhart
Andreas Schuppert
Michael Block
Elke Schaeffeler
Gabriele Boehmer
Linus Goerlitz
Jan Hoecker
Joerg Lippert
Reinhold Kerb
Jochen Hampe
Lars Kuepfer
Matthias Schwab
Translational learning from clinical studies predicts drug pharmacokinetics across patient populations
description Systems pharmacology: predicting population pharmacokinetics in silico Physiologically based modeling together with Bayesian statistics allows the prediction of drug pharmacokinetics in specific patient populations. An interdisciplinary group of clinicians and computational scientists led by Dr. Lars Kuepfer from Bayer developed a generic workflow consisting of several consecutive learning steps where knowledge about both individual physiology as well as drug physicochemistry can be efficiently derived from plasma concentration profiles. The acquired information is then be used for the prediction of the pharmacokinetic behavior of a new drug candidate in a diseased population. This allows to simulate the variability in drug exposure virtually before starting clinical investigation in real patients in order to evaluate drug safety or efficacy through the simulation of virtual populations. Further development of this workflow could improve the safety of clinical development programs to assess the risk-benefit ratio of novel drug candidates in silico.
format article
author Markus Krauss
Ute Hofmann
Clemens Schafmayer
Svitlana Igel
Jan Schlender
Christian Mueller
Mario Brosch
Witigo von Schoenfels
Wiebke Erhart
Andreas Schuppert
Michael Block
Elke Schaeffeler
Gabriele Boehmer
Linus Goerlitz
Jan Hoecker
Joerg Lippert
Reinhold Kerb
Jochen Hampe
Lars Kuepfer
Matthias Schwab
author_facet Markus Krauss
Ute Hofmann
Clemens Schafmayer
Svitlana Igel
Jan Schlender
Christian Mueller
Mario Brosch
Witigo von Schoenfels
Wiebke Erhart
Andreas Schuppert
Michael Block
Elke Schaeffeler
Gabriele Boehmer
Linus Goerlitz
Jan Hoecker
Joerg Lippert
Reinhold Kerb
Jochen Hampe
Lars Kuepfer
Matthias Schwab
author_sort Markus Krauss
title Translational learning from clinical studies predicts drug pharmacokinetics across patient populations
title_short Translational learning from clinical studies predicts drug pharmacokinetics across patient populations
title_full Translational learning from clinical studies predicts drug pharmacokinetics across patient populations
title_fullStr Translational learning from clinical studies predicts drug pharmacokinetics across patient populations
title_full_unstemmed Translational learning from clinical studies predicts drug pharmacokinetics across patient populations
title_sort translational learning from clinical studies predicts drug pharmacokinetics across patient populations
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/ec1cdb4109a643779b3939519f2d8816
work_keys_str_mv AT markuskrauss translationallearningfromclinicalstudiespredictsdrugpharmacokineticsacrosspatientpopulations
AT utehofmann translationallearningfromclinicalstudiespredictsdrugpharmacokineticsacrosspatientpopulations
AT clemensschafmayer translationallearningfromclinicalstudiespredictsdrugpharmacokineticsacrosspatientpopulations
AT svitlanaigel translationallearningfromclinicalstudiespredictsdrugpharmacokineticsacrosspatientpopulations
AT janschlender translationallearningfromclinicalstudiespredictsdrugpharmacokineticsacrosspatientpopulations
AT christianmueller translationallearningfromclinicalstudiespredictsdrugpharmacokineticsacrosspatientpopulations
AT mariobrosch translationallearningfromclinicalstudiespredictsdrugpharmacokineticsacrosspatientpopulations
AT witigovonschoenfels translationallearningfromclinicalstudiespredictsdrugpharmacokineticsacrosspatientpopulations
AT wiebkeerhart translationallearningfromclinicalstudiespredictsdrugpharmacokineticsacrosspatientpopulations
AT andreasschuppert translationallearningfromclinicalstudiespredictsdrugpharmacokineticsacrosspatientpopulations
AT michaelblock translationallearningfromclinicalstudiespredictsdrugpharmacokineticsacrosspatientpopulations
AT elkeschaeffeler translationallearningfromclinicalstudiespredictsdrugpharmacokineticsacrosspatientpopulations
AT gabrieleboehmer translationallearningfromclinicalstudiespredictsdrugpharmacokineticsacrosspatientpopulations
AT linusgoerlitz translationallearningfromclinicalstudiespredictsdrugpharmacokineticsacrosspatientpopulations
AT janhoecker translationallearningfromclinicalstudiespredictsdrugpharmacokineticsacrosspatientpopulations
AT joerglippert translationallearningfromclinicalstudiespredictsdrugpharmacokineticsacrosspatientpopulations
AT reinholdkerb translationallearningfromclinicalstudiespredictsdrugpharmacokineticsacrosspatientpopulations
AT jochenhampe translationallearningfromclinicalstudiespredictsdrugpharmacokineticsacrosspatientpopulations
AT larskuepfer translationallearningfromclinicalstudiespredictsdrugpharmacokineticsacrosspatientpopulations
AT matthiasschwab translationallearningfromclinicalstudiespredictsdrugpharmacokineticsacrosspatientpopulations
_version_ 1718395375942893568