Entanglement across separate silicon dies in a modular superconducting qubit device
Abstract Assembling future large-scale quantum computers out of smaller, specialized modules promises to simplify a number of formidable science and engineering challenges. One of the primary challenges in developing a modular architecture is in engineering high fidelity, low-latency quantum interco...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ec282379a3494434ab3a9c0f5bb2915b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ec282379a3494434ab3a9c0f5bb2915b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ec282379a3494434ab3a9c0f5bb2915b2021-12-02T19:17:04ZEntanglement across separate silicon dies in a modular superconducting qubit device10.1038/s41534-021-00484-12056-6387https://doaj.org/article/ec282379a3494434ab3a9c0f5bb2915b2021-09-01T00:00:00Zhttps://doi.org/10.1038/s41534-021-00484-1https://doaj.org/toc/2056-6387Abstract Assembling future large-scale quantum computers out of smaller, specialized modules promises to simplify a number of formidable science and engineering challenges. One of the primary challenges in developing a modular architecture is in engineering high fidelity, low-latency quantum interconnects between modules. Here we demonstrate a modular solid state architecture with deterministic inter-module coupling between four physically separate, interchangeable superconducting qubit integrated circuits, achieving two-qubit gate fidelities as high as 99.1 ± 0.5% and 98.3 ± 0.3% for iSWAP and CZ entangling gates, respectively. The quality of the inter-module entanglement is further confirmed by a demonstration of Bell-inequality violation for disjoint pairs of entangled qubits across the four separate silicon dies. Having proven out the fundamental building blocks, this work provides the technological foundations for a modular quantum processor: technology which will accelerate near-term experimental efforts and open up new paths to the fault-tolerant era for solid state qubit architectures.Alysson GoldJ. P. PaquetteAnna StockklauserMatthew J. ReagorM. Sohaib AlamAndrew BestwickNicolas DidierAni NersisyanFeyza OrucArmin RazaviBen ScharmannEyob A. SeteBiswajit SurDavide VenturelliCody James WinkleblackFilip WudarskiMike HarburnChad RigettiNature PortfolioarticlePhysicsQC1-999Electronic computers. Computer scienceQA75.5-76.95ENnpj Quantum Information, Vol 7, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 Electronic computers. Computer science QA75.5-76.95 |
spellingShingle |
Physics QC1-999 Electronic computers. Computer science QA75.5-76.95 Alysson Gold J. P. Paquette Anna Stockklauser Matthew J. Reagor M. Sohaib Alam Andrew Bestwick Nicolas Didier Ani Nersisyan Feyza Oruc Armin Razavi Ben Scharmann Eyob A. Sete Biswajit Sur Davide Venturelli Cody James Winkleblack Filip Wudarski Mike Harburn Chad Rigetti Entanglement across separate silicon dies in a modular superconducting qubit device |
description |
Abstract Assembling future large-scale quantum computers out of smaller, specialized modules promises to simplify a number of formidable science and engineering challenges. One of the primary challenges in developing a modular architecture is in engineering high fidelity, low-latency quantum interconnects between modules. Here we demonstrate a modular solid state architecture with deterministic inter-module coupling between four physically separate, interchangeable superconducting qubit integrated circuits, achieving two-qubit gate fidelities as high as 99.1 ± 0.5% and 98.3 ± 0.3% for iSWAP and CZ entangling gates, respectively. The quality of the inter-module entanglement is further confirmed by a demonstration of Bell-inequality violation for disjoint pairs of entangled qubits across the four separate silicon dies. Having proven out the fundamental building blocks, this work provides the technological foundations for a modular quantum processor: technology which will accelerate near-term experimental efforts and open up new paths to the fault-tolerant era for solid state qubit architectures. |
format |
article |
author |
Alysson Gold J. P. Paquette Anna Stockklauser Matthew J. Reagor M. Sohaib Alam Andrew Bestwick Nicolas Didier Ani Nersisyan Feyza Oruc Armin Razavi Ben Scharmann Eyob A. Sete Biswajit Sur Davide Venturelli Cody James Winkleblack Filip Wudarski Mike Harburn Chad Rigetti |
author_facet |
Alysson Gold J. P. Paquette Anna Stockklauser Matthew J. Reagor M. Sohaib Alam Andrew Bestwick Nicolas Didier Ani Nersisyan Feyza Oruc Armin Razavi Ben Scharmann Eyob A. Sete Biswajit Sur Davide Venturelli Cody James Winkleblack Filip Wudarski Mike Harburn Chad Rigetti |
author_sort |
Alysson Gold |
title |
Entanglement across separate silicon dies in a modular superconducting qubit device |
title_short |
Entanglement across separate silicon dies in a modular superconducting qubit device |
title_full |
Entanglement across separate silicon dies in a modular superconducting qubit device |
title_fullStr |
Entanglement across separate silicon dies in a modular superconducting qubit device |
title_full_unstemmed |
Entanglement across separate silicon dies in a modular superconducting qubit device |
title_sort |
entanglement across separate silicon dies in a modular superconducting qubit device |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/ec282379a3494434ab3a9c0f5bb2915b |
work_keys_str_mv |
AT alyssongold entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice AT jppaquette entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice AT annastockklauser entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice AT matthewjreagor entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice AT msohaibalam entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice AT andrewbestwick entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice AT nicolasdidier entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice AT aninersisyan entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice AT feyzaoruc entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice AT arminrazavi entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice AT benscharmann entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice AT eyobasete entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice AT biswajitsur entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice AT davideventurelli entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice AT codyjameswinkleblack entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice AT filipwudarski entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice AT mikeharburn entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice AT chadrigetti entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice |
_version_ |
1718376946178457600 |