Entanglement across separate silicon dies in a modular superconducting qubit device

Abstract Assembling future large-scale quantum computers out of smaller, specialized modules promises to simplify a number of formidable science and engineering challenges. One of the primary challenges in developing a modular architecture is in engineering high fidelity, low-latency quantum interco...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alysson Gold, J. P. Paquette, Anna Stockklauser, Matthew J. Reagor, M. Sohaib Alam, Andrew Bestwick, Nicolas Didier, Ani Nersisyan, Feyza Oruc, Armin Razavi, Ben Scharmann, Eyob A. Sete, Biswajit Sur, Davide Venturelli, Cody James Winkleblack, Filip Wudarski, Mike Harburn, Chad Rigetti
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/ec282379a3494434ab3a9c0f5bb2915b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ec282379a3494434ab3a9c0f5bb2915b
record_format dspace
spelling oai:doaj.org-article:ec282379a3494434ab3a9c0f5bb2915b2021-12-02T19:17:04ZEntanglement across separate silicon dies in a modular superconducting qubit device10.1038/s41534-021-00484-12056-6387https://doaj.org/article/ec282379a3494434ab3a9c0f5bb2915b2021-09-01T00:00:00Zhttps://doi.org/10.1038/s41534-021-00484-1https://doaj.org/toc/2056-6387Abstract Assembling future large-scale quantum computers out of smaller, specialized modules promises to simplify a number of formidable science and engineering challenges. One of the primary challenges in developing a modular architecture is in engineering high fidelity, low-latency quantum interconnects between modules. Here we demonstrate a modular solid state architecture with deterministic inter-module coupling between four physically separate, interchangeable superconducting qubit integrated circuits, achieving two-qubit gate fidelities as high as 99.1 ± 0.5% and 98.3 ± 0.3% for iSWAP and CZ entangling gates, respectively. The quality of the inter-module entanglement is further confirmed by a demonstration of Bell-inequality violation for disjoint pairs of entangled qubits across the four separate silicon dies. Having proven out the fundamental building blocks, this work provides the technological foundations for a modular quantum processor: technology which will accelerate near-term experimental efforts and open up new paths to the fault-tolerant era for solid state qubit architectures.Alysson GoldJ. P. PaquetteAnna StockklauserMatthew J. ReagorM. Sohaib AlamAndrew BestwickNicolas DidierAni NersisyanFeyza OrucArmin RazaviBen ScharmannEyob A. SeteBiswajit SurDavide VenturelliCody James WinkleblackFilip WudarskiMike HarburnChad RigettiNature PortfolioarticlePhysicsQC1-999Electronic computers. Computer scienceQA75.5-76.95ENnpj Quantum Information, Vol 7, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
Electronic computers. Computer science
QA75.5-76.95
spellingShingle Physics
QC1-999
Electronic computers. Computer science
QA75.5-76.95
Alysson Gold
J. P. Paquette
Anna Stockklauser
Matthew J. Reagor
M. Sohaib Alam
Andrew Bestwick
Nicolas Didier
Ani Nersisyan
Feyza Oruc
Armin Razavi
Ben Scharmann
Eyob A. Sete
Biswajit Sur
Davide Venturelli
Cody James Winkleblack
Filip Wudarski
Mike Harburn
Chad Rigetti
Entanglement across separate silicon dies in a modular superconducting qubit device
description Abstract Assembling future large-scale quantum computers out of smaller, specialized modules promises to simplify a number of formidable science and engineering challenges. One of the primary challenges in developing a modular architecture is in engineering high fidelity, low-latency quantum interconnects between modules. Here we demonstrate a modular solid state architecture with deterministic inter-module coupling between four physically separate, interchangeable superconducting qubit integrated circuits, achieving two-qubit gate fidelities as high as 99.1 ± 0.5% and 98.3 ± 0.3% for iSWAP and CZ entangling gates, respectively. The quality of the inter-module entanglement is further confirmed by a demonstration of Bell-inequality violation for disjoint pairs of entangled qubits across the four separate silicon dies. Having proven out the fundamental building blocks, this work provides the technological foundations for a modular quantum processor: technology which will accelerate near-term experimental efforts and open up new paths to the fault-tolerant era for solid state qubit architectures.
format article
author Alysson Gold
J. P. Paquette
Anna Stockklauser
Matthew J. Reagor
M. Sohaib Alam
Andrew Bestwick
Nicolas Didier
Ani Nersisyan
Feyza Oruc
Armin Razavi
Ben Scharmann
Eyob A. Sete
Biswajit Sur
Davide Venturelli
Cody James Winkleblack
Filip Wudarski
Mike Harburn
Chad Rigetti
author_facet Alysson Gold
J. P. Paquette
Anna Stockklauser
Matthew J. Reagor
M. Sohaib Alam
Andrew Bestwick
Nicolas Didier
Ani Nersisyan
Feyza Oruc
Armin Razavi
Ben Scharmann
Eyob A. Sete
Biswajit Sur
Davide Venturelli
Cody James Winkleblack
Filip Wudarski
Mike Harburn
Chad Rigetti
author_sort Alysson Gold
title Entanglement across separate silicon dies in a modular superconducting qubit device
title_short Entanglement across separate silicon dies in a modular superconducting qubit device
title_full Entanglement across separate silicon dies in a modular superconducting qubit device
title_fullStr Entanglement across separate silicon dies in a modular superconducting qubit device
title_full_unstemmed Entanglement across separate silicon dies in a modular superconducting qubit device
title_sort entanglement across separate silicon dies in a modular superconducting qubit device
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/ec282379a3494434ab3a9c0f5bb2915b
work_keys_str_mv AT alyssongold entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice
AT jppaquette entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice
AT annastockklauser entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice
AT matthewjreagor entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice
AT msohaibalam entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice
AT andrewbestwick entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice
AT nicolasdidier entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice
AT aninersisyan entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice
AT feyzaoruc entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice
AT arminrazavi entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice
AT benscharmann entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice
AT eyobasete entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice
AT biswajitsur entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice
AT davideventurelli entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice
AT codyjameswinkleblack entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice
AT filipwudarski entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice
AT mikeharburn entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice
AT chadrigetti entanglementacrossseparatesilicondiesinamodularsuperconductingqubitdevice
_version_ 1718376946178457600