Predicting Causal Relationships from Biological Data: Applying Automated Causal Discovery on Mass Cytometry Data of Human Immune Cells

Abstract Learning the causal relationships that define a molecular system allows us to predict how the system will respond to different interventions. Distinguishing causality from mere association typically requires randomized experiments. Methods for automated  causal discovery from limited experi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sofia Triantafillou, Vincenzo Lagani, Christina Heinze-Deml, Angelika Schmidt, Jesper Tegner, Ioannis Tsamardinos
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/ec82a6e1b2fd40ee8b1e4ad2d4552b47
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!