Predicting Causal Relationships from Biological Data: Applying Automated Causal Discovery on Mass Cytometry Data of Human Immune Cells
Abstract Learning the causal relationships that define a molecular system allows us to predict how the system will respond to different interventions. Distinguishing causality from mere association typically requires randomized experiments. Methods for automated causal discovery from limited experi...
Guardado en:
Autores principales: | Sofia Triantafillou, Vincenzo Lagani, Christina Heinze-Deml, Angelika Schmidt, Jesper Tegner, Ioannis Tsamardinos |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ec82a6e1b2fd40ee8b1e4ad2d4552b47 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An integrated multimodal model of alcohol use disorder generated by data-driven causal discovery analysis
por: Eric Rawls, et al.
Publicado: (2021) -
Automated analysis of bacterial flow cytometry data with FlowGateNIST.
por: David Ross
Publicado: (2021) -
Automated machine learning optimizes and accelerates predictive modeling from COVID-19 high throughput datasets
por: Georgios Papoutsoglou, et al.
Publicado: (2021) -
Randomized and non-randomized designs for causal inference with longitudinal data in rare disorders
por: Rima Izem, et al.
Publicado: (2021) -
Fast and effective pseudo transfer entropy for bivariate data-driven causal inference
por: Riccardo Silini, et al.
Publicado: (2021)