Predicting Causal Relationships from Biological Data: Applying Automated Causal Discovery on Mass Cytometry Data of Human Immune Cells
Abstract Learning the causal relationships that define a molecular system allows us to predict how the system will respond to different interventions. Distinguishing causality from mere association typically requires randomized experiments. Methods for automated causal discovery from limited experi...
Enregistré dans:
Auteurs principaux: | Sofia Triantafillou, Vincenzo Lagani, Christina Heinze-Deml, Angelika Schmidt, Jesper Tegner, Ioannis Tsamardinos |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ec82a6e1b2fd40ee8b1e4ad2d4552b47 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
An integrated multimodal model of alcohol use disorder generated by data-driven causal discovery analysis
par: Eric Rawls, et autres
Publié: (2021) -
Automated analysis of bacterial flow cytometry data with FlowGateNIST.
par: David Ross
Publié: (2021) -
Automated machine learning optimizes and accelerates predictive modeling from COVID-19 high throughput datasets
par: Georgios Papoutsoglou, et autres
Publié: (2021) -
Randomized and non-randomized designs for causal inference with longitudinal data in rare disorders
par: Rima Izem, et autres
Publié: (2021) -
Fast and effective pseudo transfer entropy for bivariate data-driven causal inference
par: Riccardo Silini, et autres
Publié: (2021)