Predicting Causal Relationships from Biological Data: Applying Automated Causal Discovery on Mass Cytometry Data of Human Immune Cells

Abstract Learning the causal relationships that define a molecular system allows us to predict how the system will respond to different interventions. Distinguishing causality from mere association typically requires randomized experiments. Methods for automated  causal discovery from limited experi...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Sofia Triantafillou, Vincenzo Lagani, Christina Heinze-Deml, Angelika Schmidt, Jesper Tegner, Ioannis Tsamardinos
Format: article
Langue:EN
Publié: Nature Portfolio 2017
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/ec82a6e1b2fd40ee8b1e4ad2d4552b47
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!