Hollow-tree super: A directional and scalable approach for feature importance in boosted tree models

<h4>Purpose</h4> Current limitations in methodologies used throughout machine-learning to investigate feature importance in boosted tree modelling prevent the effective scaling to datasets with a large number of features, particularly when one is investigating both the magnitude and dire...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Stephane Doyen, Hugh Taylor, Peter Nicholas, Lewis Crawford, Isabella Young, Michael E. Sughrue
Format: article
Langue:EN
Publié: Public Library of Science (PLoS) 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/ecc3631e3174436696d67ada24c562be
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!