Hollow-tree super: A directional and scalable approach for feature importance in boosted tree models
<h4>Purpose</h4> Current limitations in methodologies used throughout machine-learning to investigate feature importance in boosted tree modelling prevent the effective scaling to datasets with a large number of features, particularly when one is investigating both the magnitude and dire...
Enregistré dans:
Auteurs principaux: | , , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ecc3631e3174436696d67ada24c562be |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Soyez le premier à ajouter un commentaire!