Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
Abstract The 4D scanning transmission electron microscopy (STEM) method maps the structure and functionality of solids on the atomic scale, yielding information-rich data sets describing the interatomic electric and magnetic fields, structural and electronic order parameters, and other symmetry brea...
Guardado en:
Autores principales: | Mark P. Oxley, Maxim Ziatdinov, Ondrej Dyck, Andrew R. Lupini, Rama Vasudevan, Sergei V. Kalinin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ecf1dba1c93343adbad24d4051791a72 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Gaussian process analysis of electron energy loss spectroscopy data: multivariate reconstruction and kernel control
por: Sergei V. Kalinin, et al.
Publicado: (2021) -
Ensemble learning-iterative training machine learning for uncertainty quantification and automated experiment in atom-resolved microscopy
por: Ayana Ghosh, et al.
Publicado: (2021) -
Off-the-shelf deep learning is not enough, and requires parsimony, Bayesianity, and causality
por: Rama K. Vasudevan, et al.
Publicado: (2021) -
Defect detection in atomic-resolution images via unsupervised learning with translational invariance
por: Yueming Guo, et al.
Publicado: (2021) -
Deep Bayesian local crystallography
por: Sergei V. Kalinin, et al.
Publicado: (2021)