Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
Abstract The 4D scanning transmission electron microscopy (STEM) method maps the structure and functionality of solids on the atomic scale, yielding information-rich data sets describing the interatomic electric and magnetic fields, structural and electronic order parameters, and other symmetry brea...
Enregistré dans:
Auteurs principaux: | Mark P. Oxley, Maxim Ziatdinov, Ondrej Dyck, Andrew R. Lupini, Rama Vasudevan, Sergei V. Kalinin |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ecf1dba1c93343adbad24d4051791a72 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Gaussian process analysis of electron energy loss spectroscopy data: multivariate reconstruction and kernel control
par: Sergei V. Kalinin, et autres
Publié: (2021) -
Ensemble learning-iterative training machine learning for uncertainty quantification and automated experiment in atom-resolved microscopy
par: Ayana Ghosh, et autres
Publié: (2021) -
Off-the-shelf deep learning is not enough, and requires parsimony, Bayesianity, and causality
par: Rama K. Vasudevan, et autres
Publié: (2021) -
Defect detection in atomic-resolution images via unsupervised learning with translational invariance
par: Yueming Guo, et autres
Publié: (2021) -
Deep Bayesian local crystallography
par: Sergei V. Kalinin, et autres
Publié: (2021)