De novo mutational signature discovery in tumor genomes using SparseSignatures.
Cancer is the result of mutagenic processes that can be inferred from tumor genomes by analyzing rate spectra of point mutations, or "mutational signatures". Here we present SparseSignatures, a novel framework to extract signatures from somatic point mutation data. Our approach incorporate...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ed06227f6ba944be9baaed2c108694e4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ed06227f6ba944be9baaed2c108694e4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ed06227f6ba944be9baaed2c108694e42021-11-25T05:40:34ZDe novo mutational signature discovery in tumor genomes using SparseSignatures.1553-734X1553-735810.1371/journal.pcbi.1009119https://doaj.org/article/ed06227f6ba944be9baaed2c108694e42021-06-01T00:00:00Zhttps://doi.org/10.1371/journal.pcbi.1009119https://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358Cancer is the result of mutagenic processes that can be inferred from tumor genomes by analyzing rate spectra of point mutations, or "mutational signatures". Here we present SparseSignatures, a novel framework to extract signatures from somatic point mutation data. Our approach incorporates a user-specified background signature, employs regularization to reduce noise in non-background signatures, uses cross-validation to identify the number of signatures, and is scalable to large datasets. We show that SparseSignatures outperforms current state-of-the-art methods on simulated data using a variety of standard metrics. We then apply SparseSignatures to whole genome sequences of pancreatic and breast tumors, discovering well-differentiated signatures that are linked to known mutagenic mechanisms and are strongly associated with patient clinical features.Avantika LalKeli LiuRobert TibshiraniArend SidowDaniele RamazzottiPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 17, Iss 6, p e1009119 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Avantika Lal Keli Liu Robert Tibshirani Arend Sidow Daniele Ramazzotti De novo mutational signature discovery in tumor genomes using SparseSignatures. |
description |
Cancer is the result of mutagenic processes that can be inferred from tumor genomes by analyzing rate spectra of point mutations, or "mutational signatures". Here we present SparseSignatures, a novel framework to extract signatures from somatic point mutation data. Our approach incorporates a user-specified background signature, employs regularization to reduce noise in non-background signatures, uses cross-validation to identify the number of signatures, and is scalable to large datasets. We show that SparseSignatures outperforms current state-of-the-art methods on simulated data using a variety of standard metrics. We then apply SparseSignatures to whole genome sequences of pancreatic and breast tumors, discovering well-differentiated signatures that are linked to known mutagenic mechanisms and are strongly associated with patient clinical features. |
format |
article |
author |
Avantika Lal Keli Liu Robert Tibshirani Arend Sidow Daniele Ramazzotti |
author_facet |
Avantika Lal Keli Liu Robert Tibshirani Arend Sidow Daniele Ramazzotti |
author_sort |
Avantika Lal |
title |
De novo mutational signature discovery in tumor genomes using SparseSignatures. |
title_short |
De novo mutational signature discovery in tumor genomes using SparseSignatures. |
title_full |
De novo mutational signature discovery in tumor genomes using SparseSignatures. |
title_fullStr |
De novo mutational signature discovery in tumor genomes using SparseSignatures. |
title_full_unstemmed |
De novo mutational signature discovery in tumor genomes using SparseSignatures. |
title_sort |
de novo mutational signature discovery in tumor genomes using sparsesignatures. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/ed06227f6ba944be9baaed2c108694e4 |
work_keys_str_mv |
AT avantikalal denovomutationalsignaturediscoveryintumorgenomesusingsparsesignatures AT keliliu denovomutationalsignaturediscoveryintumorgenomesusingsparsesignatures AT roberttibshirani denovomutationalsignaturediscoveryintumorgenomesusingsparsesignatures AT arendsidow denovomutationalsignaturediscoveryintumorgenomesusingsparsesignatures AT danieleramazzotti denovomutationalsignaturediscoveryintumorgenomesusingsparsesignatures |
_version_ |
1718414553475186688 |