De novo mutational signature discovery in tumor genomes using SparseSignatures.

Cancer is the result of mutagenic processes that can be inferred from tumor genomes by analyzing rate spectra of point mutations, or "mutational signatures". Here we present SparseSignatures, a novel framework to extract signatures from somatic point mutation data. Our approach incorporate...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Avantika Lal, Keli Liu, Robert Tibshirani, Arend Sidow, Daniele Ramazzotti
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
Acceso en línea:https://doaj.org/article/ed06227f6ba944be9baaed2c108694e4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ed06227f6ba944be9baaed2c108694e4
record_format dspace
spelling oai:doaj.org-article:ed06227f6ba944be9baaed2c108694e42021-11-25T05:40:34ZDe novo mutational signature discovery in tumor genomes using SparseSignatures.1553-734X1553-735810.1371/journal.pcbi.1009119https://doaj.org/article/ed06227f6ba944be9baaed2c108694e42021-06-01T00:00:00Zhttps://doi.org/10.1371/journal.pcbi.1009119https://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358Cancer is the result of mutagenic processes that can be inferred from tumor genomes by analyzing rate spectra of point mutations, or "mutational signatures". Here we present SparseSignatures, a novel framework to extract signatures from somatic point mutation data. Our approach incorporates a user-specified background signature, employs regularization to reduce noise in non-background signatures, uses cross-validation to identify the number of signatures, and is scalable to large datasets. We show that SparseSignatures outperforms current state-of-the-art methods on simulated data using a variety of standard metrics. We then apply SparseSignatures to whole genome sequences of pancreatic and breast tumors, discovering well-differentiated signatures that are linked to known mutagenic mechanisms and are strongly associated with patient clinical features.Avantika LalKeli LiuRobert TibshiraniArend SidowDaniele RamazzottiPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 17, Iss 6, p e1009119 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Avantika Lal
Keli Liu
Robert Tibshirani
Arend Sidow
Daniele Ramazzotti
De novo mutational signature discovery in tumor genomes using SparseSignatures.
description Cancer is the result of mutagenic processes that can be inferred from tumor genomes by analyzing rate spectra of point mutations, or "mutational signatures". Here we present SparseSignatures, a novel framework to extract signatures from somatic point mutation data. Our approach incorporates a user-specified background signature, employs regularization to reduce noise in non-background signatures, uses cross-validation to identify the number of signatures, and is scalable to large datasets. We show that SparseSignatures outperforms current state-of-the-art methods on simulated data using a variety of standard metrics. We then apply SparseSignatures to whole genome sequences of pancreatic and breast tumors, discovering well-differentiated signatures that are linked to known mutagenic mechanisms and are strongly associated with patient clinical features.
format article
author Avantika Lal
Keli Liu
Robert Tibshirani
Arend Sidow
Daniele Ramazzotti
author_facet Avantika Lal
Keli Liu
Robert Tibshirani
Arend Sidow
Daniele Ramazzotti
author_sort Avantika Lal
title De novo mutational signature discovery in tumor genomes using SparseSignatures.
title_short De novo mutational signature discovery in tumor genomes using SparseSignatures.
title_full De novo mutational signature discovery in tumor genomes using SparseSignatures.
title_fullStr De novo mutational signature discovery in tumor genomes using SparseSignatures.
title_full_unstemmed De novo mutational signature discovery in tumor genomes using SparseSignatures.
title_sort de novo mutational signature discovery in tumor genomes using sparsesignatures.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/ed06227f6ba944be9baaed2c108694e4
work_keys_str_mv AT avantikalal denovomutationalsignaturediscoveryintumorgenomesusingsparsesignatures
AT keliliu denovomutationalsignaturediscoveryintumorgenomesusingsparsesignatures
AT roberttibshirani denovomutationalsignaturediscoveryintumorgenomesusingsparsesignatures
AT arendsidow denovomutationalsignaturediscoveryintumorgenomesusingsparsesignatures
AT danieleramazzotti denovomutationalsignaturediscoveryintumorgenomesusingsparsesignatures
_version_ 1718414553475186688