VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics

Developing interpretable models is a major challenge in single cell deep learning. Here we show that the VEGA variational autoencoder model, whose decoder wiring mirrors gene modules, can provide direct interpretability to the latent space further enabling the inference of biological module activity...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Lucas Seninge, Ioannis Anastopoulos, Hongxu Ding, Joshua Stuart
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/ed3aa6f7d98748388fc0f47ff767569f
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!