CH3NH3PbX3 (X = I, Br) encapsulated in silicon carbide/carbon nanotube as advanced diodes

Abstract We employ first-principles density functional theory (DFT) calculations to study CH3NH3PbX3 (X = I, Br) and its encapsulation into the silicon carbide nanotube and carbon nanotube (CNT). Our results indicate that these devices show diode behaviors which act on negative bias voltage but do n...

Full description

Saved in:
Bibliographic Details
Main Authors: Lishu Zhang, Xinyue Dai, Tao Li, Jie Li, Hui Li
Format: article
Language:EN
Published: Nature Portfolio 2018
Subjects:
R
Q
Online Access:https://doaj.org/article/ed7f29c91c4c43eebe4e42b46c62f591
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract We employ first-principles density functional theory (DFT) calculations to study CH3NH3PbX3 (X = I, Br) and its encapsulation into the silicon carbide nanotube and carbon nanotube (CNT). Our results indicate that these devices show diode behaviors which act on negative bias voltage but do not work under positive voltage. When they are encapsulated into SiC nanotube and CNT, their electronic properties would be changed, especially, electric currents mainly exist at positive bias region. Corresponding transmission spectra and density of states are provided to interpret the transport mechanism of the CH3NH3PbX3 (X = I, Br) as a diode. These findings open a new door to microelectronics and integrated circuit components, providing theoretical foundation for innovation of the new generation of electronic materials.