New segmentation and feature extraction algorithm for classification of white blood cells in peripheral smear images
Abstract This article addresses a new method for the classification of white blood cells (WBCs) using image processing techniques and machine learning methods. The proposed method consists of three steps: detecting the nucleus and cytoplasm, extracting features, and classification. At first, a new a...
Enregistré dans:
Auteurs principaux: | Sajad Tavakoli, Ali Ghaffari, Zahra Mousavi Kouzehkanan, Reshad Hosseini |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ee7dcef46f894a8c81da499e0aaa5b0c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Peripheral smear in COVID 19: a case report
par: Santosh Tummidi, et autres
Publié: (2021) -
An End-to-End Identification Algorithm for Smearing Star Image
par: Jinliang Han, et autres
Publié: (2021) -
Multi-scale guided feature extraction and classification algorithm for hyperspectral images
par: Shiqi Huang, et autres
Publié: (2021) -
Determination of mononuclear cell count using peripheral smear and flow cytometry in peripheral blood stem cell products: A retrospective study from an Indian cancer center
par: Aswathi Krishnan, et autres
Publié: (2021) -
Circular convolution-based feature extraction algorithm for classification of high-dimensional datasets
par: Tajanpure Rupali, et autres
Publié: (2021)