Rockburst Interpretation by a Data-Driven Approach: A Comparative Study
Accurately evaluating rockburst intensity has attracted much attention in these recent years, as it can guide the design of engineering in deep underground conditions and avoid injury to people. In this study, a new ensemble classifier combining a random forest classifier (RF) and beetle antennae se...
Enregistré dans:
Auteurs principaux: | Yuantian Sun, Guichen Li, Sen Yang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ee80cccec679496b970b2cd23a24d5e5 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Research on Rockburst Prediction Classification Based on GA-XGB Model
par: Xuebin Xie, et autres
Publié: (2021) -
Rockburst Precursors and the Dynamic Failure Mechanism of the Deep Tunnel: A Review
par: Yulong Chen, et autres
Publié: (2021) -
Special issue: Informatics & data-driven medicine
par: Ivan Izonin, et autres
Publié: (2021) -
An Improved Controlled Random Search Method
par: Vasileios Charilogis, et autres
Publié: (2021) -
An Intelligent Rockburst Prediction Model Based on Scorecard Methodology
par: Honglei Wang, et autres
Publié: (2021)