Size-induced twinning in InSb semiconductor during room temperature deformation

Abstract Room-temperature deformation mechanism of InSb micro-pillars has been investigated via a multi-scale experimental approach, where micro-pillars of 2 µm and 5 µm in diameter were first fabricated by focused ion beam (FIB) milling and in situ deformed in the FIB-SEM by micro-compression using...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Florent Mignerot, Bouzid Kedjar, Hadi Bahsoun, Ludovic Thilly
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/eec5722fb7794ca682d1d4ddece1be6b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Room-temperature deformation mechanism of InSb micro-pillars has been investigated via a multi-scale experimental approach, where micro-pillars of 2 µm and 5 µm in diameter were first fabricated by focused ion beam (FIB) milling and in situ deformed in the FIB-SEM by micro-compression using a nano-indenter equipped with a flat tip. Strain rate jumps have been performed to determine the strain rate sensitivity coefficient and the related activation volume. The activation volume is found to be of the order of 3–5 b3, considering that plasticity is mediated by Shockley partial dislocations. Transmission electron microscopy (TEM) thin foils were extracted from deformed micro-pillars via the FIB lift-out technique: TEM analysis reveals the presence of nano-twins as major mechanism of plastic deformation, involving Shockley partial dislocations. The presence of twins was never reported in previous studies on the plasticity of bulk InSb: this deformation mechanism is discussed in the context of the plasticity of small-scale samples.