Lattice Thermal Conductivity of MgSiO3 Perovskite from First Principles

Abstract We investigate lattice thermal conductivity κ of MgSiO3 perovskite (pv) by ab initio lattice dynamics calculations combined with exact solution of linearized phonon Boltzmann equation. At room temperature, κ of pristine MgSiO3 pv is found to be 10.7 W/(m · K) at 0 GPa. It increases linearly...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nahid Ghaderi, Dong-Bo Zhang, Huai Zhang, Jiawei Xian, Renata M. Wentzcovitch, Tao Sun
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/efb7dd5a4e18488b8423d4279caabb21
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:efb7dd5a4e18488b8423d4279caabb21
record_format dspace
spelling oai:doaj.org-article:efb7dd5a4e18488b8423d4279caabb212021-12-02T11:41:22ZLattice Thermal Conductivity of MgSiO3 Perovskite from First Principles10.1038/s41598-017-05523-62045-2322https://doaj.org/article/efb7dd5a4e18488b8423d4279caabb212017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-05523-6https://doaj.org/toc/2045-2322Abstract We investigate lattice thermal conductivity κ of MgSiO3 perovskite (pv) by ab initio lattice dynamics calculations combined with exact solution of linearized phonon Boltzmann equation. At room temperature, κ of pristine MgSiO3 pv is found to be 10.7 W/(m · K) at 0 GPa. It increases linearly with pressure and reaches 59.2 W/(m · K) at 100 GPa. These values are close to multi-anvil press measurements whereas about twice as large as those from diamond anvil cell experiments. The increase of k with pressure is attributed to the squeeze of weighted phase-spaces phonons get emitted or absorbed. Moreover, we find κ exhibits noticeable anisotropy, with κ zz being the largest component and $$({{\boldsymbol{\kappa }}}_{{\rm{\max }}}-{{\boldsymbol{\kappa }}}_{{\rm{\min }}})/\bar{{\boldsymbol{\kappa }}}$$ ( κ max − κ min ) / κ ¯ being about 25%. Such extent of anisotropy is comparable to those of upper mantle minerals such as olivine and enstatite. By analyzing phonon mean free paths and lifetimes, we further show that the weak temperature dependence of κ observed in experiments should not be caused by phonons reaching ‘minimum’ mean free paths. These results clarify the microscopic mechanism of thermal transport in MgSiO3 pv, and provide reference data for understanding heat conduction in the Earth’s deep interior.Nahid GhaderiDong-Bo ZhangHuai ZhangJiawei XianRenata M. WentzcovitchTao SunNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-9 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Nahid Ghaderi
Dong-Bo Zhang
Huai Zhang
Jiawei Xian
Renata M. Wentzcovitch
Tao Sun
Lattice Thermal Conductivity of MgSiO3 Perovskite from First Principles
description Abstract We investigate lattice thermal conductivity κ of MgSiO3 perovskite (pv) by ab initio lattice dynamics calculations combined with exact solution of linearized phonon Boltzmann equation. At room temperature, κ of pristine MgSiO3 pv is found to be 10.7 W/(m · K) at 0 GPa. It increases linearly with pressure and reaches 59.2 W/(m · K) at 100 GPa. These values are close to multi-anvil press measurements whereas about twice as large as those from diamond anvil cell experiments. The increase of k with pressure is attributed to the squeeze of weighted phase-spaces phonons get emitted or absorbed. Moreover, we find κ exhibits noticeable anisotropy, with κ zz being the largest component and $$({{\boldsymbol{\kappa }}}_{{\rm{\max }}}-{{\boldsymbol{\kappa }}}_{{\rm{\min }}})/\bar{{\boldsymbol{\kappa }}}$$ ( κ max − κ min ) / κ ¯ being about 25%. Such extent of anisotropy is comparable to those of upper mantle minerals such as olivine and enstatite. By analyzing phonon mean free paths and lifetimes, we further show that the weak temperature dependence of κ observed in experiments should not be caused by phonons reaching ‘minimum’ mean free paths. These results clarify the microscopic mechanism of thermal transport in MgSiO3 pv, and provide reference data for understanding heat conduction in the Earth’s deep interior.
format article
author Nahid Ghaderi
Dong-Bo Zhang
Huai Zhang
Jiawei Xian
Renata M. Wentzcovitch
Tao Sun
author_facet Nahid Ghaderi
Dong-Bo Zhang
Huai Zhang
Jiawei Xian
Renata M. Wentzcovitch
Tao Sun
author_sort Nahid Ghaderi
title Lattice Thermal Conductivity of MgSiO3 Perovskite from First Principles
title_short Lattice Thermal Conductivity of MgSiO3 Perovskite from First Principles
title_full Lattice Thermal Conductivity of MgSiO3 Perovskite from First Principles
title_fullStr Lattice Thermal Conductivity of MgSiO3 Perovskite from First Principles
title_full_unstemmed Lattice Thermal Conductivity of MgSiO3 Perovskite from First Principles
title_sort lattice thermal conductivity of mgsio3 perovskite from first principles
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/efb7dd5a4e18488b8423d4279caabb21
work_keys_str_mv AT nahidghaderi latticethermalconductivityofmgsio3perovskitefromfirstprinciples
AT dongbozhang latticethermalconductivityofmgsio3perovskitefromfirstprinciples
AT huaizhang latticethermalconductivityofmgsio3perovskitefromfirstprinciples
AT jiaweixian latticethermalconductivityofmgsio3perovskitefromfirstprinciples
AT renatamwentzcovitch latticethermalconductivityofmgsio3perovskitefromfirstprinciples
AT taosun latticethermalconductivityofmgsio3perovskitefromfirstprinciples
_version_ 1718395436161564672