PI3K p85α Subunit-deficient Macrophages Protect Mice from Acute Colitis due to the Enhancement of IL-10 Production
Abstract We investigated the role of the PI3K p85α subunit in the development of acute colitis with a focus on intestinal macrophages. Experimental acute colitis was induced using 3% dextran sulfate sodium (DSS) in drinking water for 7 days. The severity of DSS-induced acute colitis was significantl...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f00f74519225490b8c7048e8656b5c28 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract We investigated the role of the PI3K p85α subunit in the development of acute colitis with a focus on intestinal macrophages. Experimental acute colitis was induced using 3% dextran sulfate sodium (DSS) in drinking water for 7 days. The severity of DSS-induced acute colitis was significantly attenuated in p85α hetero-deficient (p85α+/−) mice compared with WT mice. The expression of proinflammatory mediators in intestinal macrophages isolated from the inflamed colonic mucosa was significantly suppressed in p85α+/− colitis mice compared with WT colitis mice. Interestingly, we found that bone marrow-derived macrophages (BMDMs) from p85α+/− mice produced a significantly higher amount of IL-10 than BMDMs from WT mice. The adoptive transfer of p85α+/− BMDMs, but not WT BMDMs, significantly improved the severity in WT colitis mice, and this effect was reversed by anti-IL-10 antibody. Furthermore, the expression of IL-10 in the intestinal macrophages of p85α+/− normal colonic mucosa was significantly higher than that in the intestinal macrophages of WT normal colonic mucosa. The present results demonstrate that p85α+/− mice exhibit a reduced susceptibility to DSS-induced acute colitis. Our study suggests that a deficiency of PI3K p85α enhances the production of IL-10 in intestinal macrophages, thereby suppressing the development of DSS-induced acute colitis. |
---|