Deep-learning-based real-time prediction of acute kidney injury outperforms human predictive performance
Abstract Acute kidney injury (AKI) is a major complication after cardiothoracic surgery. Early prediction of AKI could prompt preventive measures, but is challenging in the clinical routine. One important reason is that the amount of postoperative data is too massive and too high-dimensional to be e...
Enregistré dans:
Auteurs principaux: | , , , , , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f075b261cadc4b909376e8bceccb2f25 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|