Deep-learning-based real-time prediction of acute kidney injury outperforms human predictive performance
Abstract Acute kidney injury (AKI) is a major complication after cardiothoracic surgery. Early prediction of AKI could prompt preventive measures, but is challenging in the clinical routine. One important reason is that the amount of postoperative data is too massive and too high-dimensional to be e...
Guardado en:
Autores principales: | Nina Rank, Boris Pfahringer, Jörg Kempfert, Christof Stamm, Titus Kühne, Felix Schoenrath, Volkmar Falk, Carsten Eickhoff, Alexander Meyer |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f075b261cadc4b909376e8bceccb2f25 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Wearable devices can predict the outcome of standardized 6-minute walk tests in heart disease
por: Charlotte Schubert, et al.
Publicado: (2020) -
Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities
por: Jessica K. Paulus, et al.
Publicado: (2020) -
The Framing of machine learning risk prediction models illustrated by evaluation of sepsis in general wards
por: Simon Meyer Lauritsen, et al.
Publicado: (2021) -
Identifying unreliable predictions in clinical risk models
por: Paul D. Myers, et al.
Publicado: (2020) -
Dynamic prediction of renal survival among deeply phenotyped kidney transplant recipients using artificial intelligence: an observational, international, multicohort study
por: Marc Raynaud, PhD, et al.
Publicado: (2021)