A reinforcement learning model to inform optimal decision paths for HIV elimination
The 'Ending the HIV Epidemic (EHE)' national plan aims to reduce annual HIV incidence in the United States from 38,000 in 2015 to 9300 by 2025 and 3300 by 2030. Diagnosis and treatment are two most effective interventions, and thus, identifying corresponding optimal combinations of testing...
Enregistré dans:
Auteurs principaux: | Seyedeh N. Khatami, Chaitra Gopalappa |
---|---|
Format: | article |
Langue: | EN |
Publié: |
AIMS Press
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f18f1efdd24747e58680c9ce413feb68 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Evaluación de la infección por VIH en Chile: pronunciamiento del Comité VIH de la Academia Chilena de Medicina
par: Wolff R.,Marcelo, et autres
Publié: (2020) -
Tackling pandemics in smart cities using machine learning architecture
par: Desire Ngabo, et autres
Publié: (2021) -
Almost periodic solutions for a SVIR epidemic model with relapse
par: Yifan Xing, et autres
Publié: (2021) -
Comparison of adhesive bond strength among fiber reinforced post and core with different cementation techniques: In vitro study
par: Abdulaziz AlHelal, et autres
Publié: (2021) -
Mathematical modeling of impact of eCD4-Ig molecule in control and management of HIV within a host
par: Tae Jin Lee, et autres
Publié: (2021)