Cell morphology-based machine learning models for human cell state classification
Abstract Herein, we implement and access machine learning architectures to ascertain models that differentiate healthy from apoptotic cells using exclusively forward (FSC) and side (SSC) scatter flow cytometry information. To generate training data, colorectal cancer HCT116 cells were subjected to m...
Guardado en:
Autores principales: | Yi Li, Chance M. Nowak, Uyen Pham, Khai Nguyen, Leonidas Bleris |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f1e3a60d60654b6bbac2e007e799a270 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine Learning Based on Morphological Features Enables Classification of Primary Intestinal T-Cell Lymphomas
por: Wei-Hsiang Yu, et al.
Publicado: (2021) -
Machine learning-based classification of mitochondrial morphology in primary neurons and brain
por: Garrett M. Fogo, et al.
Publicado: (2021) -
Machine Learning Model for Intracranial Hemorrhage Diagnosis and Classification
por: Sundar Santhoshkumar, et al.
Publicado: (2021) -
Cell-morphodynamic phenotype classification with application to cancer metastasis using cell magnetorotation and machine-learning.
por: Remy Elbez, et al.
Publicado: (2021) -
Cell-morphodynamic phenotype classification with application to cancer metastasis using cell magnetorotation and machine-learning
por: Remy Elbez, et al.
Publicado: (2021)