Cell morphology-based machine learning models for human cell state classification
Abstract Herein, we implement and access machine learning architectures to ascertain models that differentiate healthy from apoptotic cells using exclusively forward (FSC) and side (SSC) scatter flow cytometry information. To generate training data, colorectal cancer HCT116 cells were subjected to m...
Enregistré dans:
Auteurs principaux: | Yi Li, Chance M. Nowak, Uyen Pham, Khai Nguyen, Leonidas Bleris |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f1e3a60d60654b6bbac2e007e799a270 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Machine Learning Based on Morphological Features Enables Classification of Primary Intestinal T-Cell Lymphomas
par: Wei-Hsiang Yu, et autres
Publié: (2021) -
Machine learning-based classification of mitochondrial morphology in primary neurons and brain
par: Garrett M. Fogo, et autres
Publié: (2021) -
Machine Learning Model for Intracranial Hemorrhage Diagnosis and Classification
par: Sundar Santhoshkumar, et autres
Publié: (2021) -
Cell-morphodynamic phenotype classification with application to cancer metastasis using cell magnetorotation and machine-learning.
par: Remy Elbez, et autres
Publié: (2021) -
Cell-morphodynamic phenotype classification with application to cancer metastasis using cell magnetorotation and machine-learning
par: Remy Elbez, et autres
Publié: (2021)