Data-driven modeling of geometry-adaptive steady heat conduction based on convolutional neural networks

A data-driven model for rapid prediction of the steady-state heat conduction of a hot object with arbitrary geometry is developed. Mathematically, the steady-state heat conduction can be described by the Laplace's equation, where a heat (spatial) diffusion term dominates the governing equation....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jiang-Zhou Peng, Xianglei Liu, Nadine Aubry, Zhihua Chen, Wei-Tao Wu
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/f28e11a437dd48879d0f642583b7cc06
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!