Data-driven modeling of geometry-adaptive steady heat conduction based on convolutional neural networks
A data-driven model for rapid prediction of the steady-state heat conduction of a hot object with arbitrary geometry is developed. Mathematically, the steady-state heat conduction can be described by the Laplace's equation, where a heat (spatial) diffusion term dominates the governing equation....
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f28e11a437dd48879d0f642583b7cc06 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|