Data-driven modeling of geometry-adaptive steady heat conduction based on convolutional neural networks
A data-driven model for rapid prediction of the steady-state heat conduction of a hot object with arbitrary geometry is developed. Mathematically, the steady-state heat conduction can be described by the Laplace's equation, where a heat (spatial) diffusion term dominates the governing equation....
Guardado en:
Autores principales: | Jiang-Zhou Peng, Xianglei Liu, Nadine Aubry, Zhihua Chen, Wei-Tao Wu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f28e11a437dd48879d0f642583b7cc06 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Computational study of transient conjugate conductive heat transfer in light porous building walls
por: Báez,Sergio, et al.
Publicado: (2017) -
Modeling of cooling and heat conduction in permanent mold casting process
por: M. Ahmadein, et al.
Publicado: (2022) -
Effects of Microscopic Properties on Macroscopic Thermal Conductivity for Convective Heat Transfer in Porous Materials
por: Mayssaa Jbeili, et al.
Publicado: (2021) -
Determination of temperature distribution on windings of oil transformer based on the laws of heat transfer
por: Volodymyr Grabko, et al.
Publicado: (2021) -
Heat transfer and film cooling measurements on aerodynamic geometries relevant for turbomachinery
por: Patrick Jagerhofer, et al.
Publicado: (2021)