Data-driven modeling of geometry-adaptive steady heat conduction based on convolutional neural networks
A data-driven model for rapid prediction of the steady-state heat conduction of a hot object with arbitrary geometry is developed. Mathematically, the steady-state heat conduction can be described by the Laplace's equation, where a heat (spatial) diffusion term dominates the governing equation....
Enregistré dans:
Auteurs principaux: | Jiang-Zhou Peng, Xianglei Liu, Nadine Aubry, Zhihua Chen, Wei-Tao Wu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f28e11a437dd48879d0f642583b7cc06 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Computational study of transient conjugate conductive heat transfer in light porous building walls
par: Báez,Sergio, et autres
Publié: (2017) -
Modeling of cooling and heat conduction in permanent mold casting process
par: M. Ahmadein, et autres
Publié: (2022) -
Effects of Microscopic Properties on Macroscopic Thermal Conductivity for Convective Heat Transfer in Porous Materials
par: Mayssaa Jbeili, et autres
Publié: (2021) -
Determination of temperature distribution on windings of oil transformer based on the laws of heat transfer
par: Volodymyr Grabko, et autres
Publié: (2021) -
Heat transfer and film cooling measurements on aerodynamic geometries relevant for turbomachinery
par: Patrick Jagerhofer, et autres
Publié: (2021)