Data-driven modeling of geometry-adaptive steady heat conduction based on convolutional neural networks

A data-driven model for rapid prediction of the steady-state heat conduction of a hot object with arbitrary geometry is developed. Mathematically, the steady-state heat conduction can be described by the Laplace's equation, where a heat (spatial) diffusion term dominates the governing equation....

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Jiang-Zhou Peng, Xianglei Liu, Nadine Aubry, Zhihua Chen, Wei-Tao Wu
Format: article
Langue:EN
Publié: Elsevier 2021
Sujets:
Accès en ligne:https://doaj.org/article/f28e11a437dd48879d0f642583b7cc06
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!