Machine learning random forest for predicting oncosomatic variant NGS analysis
Abstract Since 2017, we have used IonTorrent NGS platform in our hospital to diagnose and treat cancer. Analyzing variants at each run requires considerable time, and we are still struggling with some variants that appear correct on the metrics at first, but are found to be negative upon further inv...
Enregistré dans:
Auteurs principaux: | Eric Pellegrino, Coralie Jacques, Nathalie Beaufils, Isabelle Nanni, Antoine Carlioz, Philippe Metellus, L’Houcine Ouafik |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f2cc208aa9504b5da4bddc6b83fc1c28 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
TRPV2 mediates adrenomedullin stimulation of prostate and urothelial cancer cell adhesion, migration and invasion.
par: Agathe Oulidi, et autres
Publié: (2013) -
Sharing genetic variants with the NGS pipeline is essential for effective genomic data sharing and reproducibility in health information exchange
par: Jeong Hoon Lee, et autres
Publié: (2021) -
NGS CAPABILITIES FOR THE STUDY OF ENTEROAGGREGATIVE E. COLI
par: A. A. Kechin, et autres
Publié: (2018) -
THE ANALYSIS OF TRANSMITTED HIV-1 VARIANTS AMONG ACUTELY INFECTED PEOPLE WHO INJECT DRUGS USING NGS APPROACH
par: E. Akulova, et autres
Publié: (2018) -
Sanger sequencing is no longer always necessary based on a single-center validation of 1109 NGS variants in 825 clinical exomes
par: A. Arteche-López, et autres
Publié: (2021)