Semi-supervised prediction of SH2-peptide interactions from imbalanced high-throughput data.
Src homology 2 (SH2) domains are the largest family of the peptide-recognition modules (PRMs) that bind to phosphotyrosine containing peptides. Knowledge about binding partners of SH2-domains is key for a deeper understanding of different cellular processes. Given the high binding specificity of SH2...
Guardado en:
Autores principales: | Kousik Kundu, Fabrizio Costa, Michael Huber, Michael Reth, Rolf Backofen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f35489c5c55e4b639f9e07db970d9c99 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Assembly Quality Detection Based on Class-Imbalanced Semi-Supervised Learning
por: Zichen Lu, et al.
Publicado: (2021) -
GraphDDP: a graph-embedding approach to detect differentiation pathways in single-cell-data using prior class knowledge
por: Fabrizio Costa, et al.
Publicado: (2018) -
Quantum semi-supervised generative adversarial network for enhanced data classification
por: Kouhei Nakaji, et al.
Publicado: (2021) -
A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli.
por: Jason Ernst, et al.
Publicado: (2008) -
Semi-Supervised Training for Positioning of Welding Seams
por: Wenbin Zhang, et al.
Publicado: (2021)