Semi-supervised prediction of SH2-peptide interactions from imbalanced high-throughput data.
Src homology 2 (SH2) domains are the largest family of the peptide-recognition modules (PRMs) that bind to phosphotyrosine containing peptides. Knowledge about binding partners of SH2-domains is key for a deeper understanding of different cellular processes. Given the high binding specificity of SH2...
Enregistré dans:
Auteurs principaux: | Kousik Kundu, Fabrizio Costa, Michael Huber, Michael Reth, Rolf Backofen |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2013
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f35489c5c55e4b639f9e07db970d9c99 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Assembly Quality Detection Based on Class-Imbalanced Semi-Supervised Learning
par: Zichen Lu, et autres
Publié: (2021) -
GraphDDP: a graph-embedding approach to detect differentiation pathways in single-cell-data using prior class knowledge
par: Fabrizio Costa, et autres
Publié: (2018) -
Quantum semi-supervised generative adversarial network for enhanced data classification
par: Kouhei Nakaji, et autres
Publié: (2021) -
A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli.
par: Jason Ernst, et autres
Publié: (2008) -
Semi-Supervised Training for Positioning of Welding Seams
par: Wenbin Zhang, et autres
Publié: (2021)