A receptor dependent-4D QSAR approach to predict the activity of mutated enzymes
Abstract Screening and selection tools to obtain focused libraries play a key role in successfully engineering enzymes of desired qualities. The quality of screening depends on efficient assays; however, a focused library generated with a priori information plays a major role in effectively identify...
Enregistré dans:
Auteurs principaux: | R. Pravin Kumar, Naveen Kulkarni |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f36e23b772ba4b379bcd21f06a9c6fea |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The effect of noise on the predictive limit of QSAR models
par: Scott S. Kolmar, et autres
Publié: (2021) -
QSAR MODEL FOR THE PREDICTION OF THE HALF LIFE OF POLYCHLORINATED BIPHENYLS IN HUMANS
par: Isaura OSPINO M., et autres
Publié: (2009) -
Simulation studies, 3D QSAR and molecular docking on a point mutation of protein kinase B with flavonoids targeting ovarian Cancer
par: Suchitra Maheswari Ajjarapu, et autres
Publié: (2021) -
Support vector regression-based QSAR models for prediction of antioxidant activity of phenolic compounds
par: Ying Shi
Publié: (2021) -
Synthesis, Antifungal Activity, 3D-QSAR, and Molecular Docking Study of Novel Menthol-Derived 1,2,4-Triazole-thioether Compounds
par: Mei Huang, et autres
Publié: (2021)