Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging

Abstract Glioblastoma (GBM) has high metabolic demands, which can lead to acidification of the tumor microenvironment. We hypothesize that a machine learning model built on temporal principal component analysis (PCA) of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI can be used to esti...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Hamed Akbari, Anahita Fathi Kazerooni, Jeffrey B. Ware, Elizabeth Mamourian, Hannah Anderson, Samantha Guiry, Chiharu Sako, Catalina Raymond, Jingwen Yao, Steven Brem, Donald M. O’Rourke, Arati S. Desai, Stephen J. Bagley, Benjamin M. Ellingson, Christos Davatzikos, Ali Nabavizadeh
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/f3997d4247b045488e4da9cb506d56e2
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!