Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging

Abstract Glioblastoma (GBM) has high metabolic demands, which can lead to acidification of the tumor microenvironment. We hypothesize that a machine learning model built on temporal principal component analysis (PCA) of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI can be used to esti...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hamed Akbari, Anahita Fathi Kazerooni, Jeffrey B. Ware, Elizabeth Mamourian, Hannah Anderson, Samantha Guiry, Chiharu Sako, Catalina Raymond, Jingwen Yao, Steven Brem, Donald M. O’Rourke, Arati S. Desai, Stephen J. Bagley, Benjamin M. Ellingson, Christos Davatzikos, Ali Nabavizadeh
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/f3997d4247b045488e4da9cb506d56e2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f3997d4247b045488e4da9cb506d56e2
record_format dspace
spelling oai:doaj.org-article:f3997d4247b045488e4da9cb506d56e22021-12-02T16:26:30ZQuantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging10.1038/s41598-021-94560-32045-2322https://doaj.org/article/f3997d4247b045488e4da9cb506d56e22021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-94560-3https://doaj.org/toc/2045-2322Abstract Glioblastoma (GBM) has high metabolic demands, which can lead to acidification of the tumor microenvironment. We hypothesize that a machine learning model built on temporal principal component analysis (PCA) of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI can be used to estimate tumor acidity in GBM, as estimated by pH-sensitive amine chemical exchange saturation transfer echo-planar imaging (CEST-EPI). We analyzed 78 MRI scans in 32 treatment naïve and post-treatment GBM patients. All patients were imaged with DSC-MRI, and pH-weighting that was quantified from CEST-EPI estimation of the magnetization transfer ratio asymmetry (MTRasym) at 3 ppm. Enhancing tumor (ET), non-enhancing core (NC), and peritumoral T2 hyperintensity (namely, edema, ED) were used to extract principal components (PCs) and to build support vector machines regression (SVR) models to predict MTRasym values using PCs. Our predicted map correlated with MTRasym values with Spearman’s r equal to 0.66, 0.47, 0.67, 0.71, in NC, ET, ED, and overall, respectively (p < 0.006). The results of this study demonstrates that PCA analysis of DSC imaging data can provide information about tumor pH in GBM patients, with the strongest association within the peritumoral regions.Hamed AkbariAnahita Fathi KazerooniJeffrey B. WareElizabeth MamourianHannah AndersonSamantha GuiryChiharu SakoCatalina RaymondJingwen YaoSteven BremDonald M. O’RourkeArati S. DesaiStephen J. BagleyBenjamin M. EllingsonChristos DavatzikosAli NabavizadehNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Hamed Akbari
Anahita Fathi Kazerooni
Jeffrey B. Ware
Elizabeth Mamourian
Hannah Anderson
Samantha Guiry
Chiharu Sako
Catalina Raymond
Jingwen Yao
Steven Brem
Donald M. O’Rourke
Arati S. Desai
Stephen J. Bagley
Benjamin M. Ellingson
Christos Davatzikos
Ali Nabavizadeh
Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging
description Abstract Glioblastoma (GBM) has high metabolic demands, which can lead to acidification of the tumor microenvironment. We hypothesize that a machine learning model built on temporal principal component analysis (PCA) of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI can be used to estimate tumor acidity in GBM, as estimated by pH-sensitive amine chemical exchange saturation transfer echo-planar imaging (CEST-EPI). We analyzed 78 MRI scans in 32 treatment naïve and post-treatment GBM patients. All patients were imaged with DSC-MRI, and pH-weighting that was quantified from CEST-EPI estimation of the magnetization transfer ratio asymmetry (MTRasym) at 3 ppm. Enhancing tumor (ET), non-enhancing core (NC), and peritumoral T2 hyperintensity (namely, edema, ED) were used to extract principal components (PCs) and to build support vector machines regression (SVR) models to predict MTRasym values using PCs. Our predicted map correlated with MTRasym values with Spearman’s r equal to 0.66, 0.47, 0.67, 0.71, in NC, ET, ED, and overall, respectively (p < 0.006). The results of this study demonstrates that PCA analysis of DSC imaging data can provide information about tumor pH in GBM patients, with the strongest association within the peritumoral regions.
format article
author Hamed Akbari
Anahita Fathi Kazerooni
Jeffrey B. Ware
Elizabeth Mamourian
Hannah Anderson
Samantha Guiry
Chiharu Sako
Catalina Raymond
Jingwen Yao
Steven Brem
Donald M. O’Rourke
Arati S. Desai
Stephen J. Bagley
Benjamin M. Ellingson
Christos Davatzikos
Ali Nabavizadeh
author_facet Hamed Akbari
Anahita Fathi Kazerooni
Jeffrey B. Ware
Elizabeth Mamourian
Hannah Anderson
Samantha Guiry
Chiharu Sako
Catalina Raymond
Jingwen Yao
Steven Brem
Donald M. O’Rourke
Arati S. Desai
Stephen J. Bagley
Benjamin M. Ellingson
Christos Davatzikos
Ali Nabavizadeh
author_sort Hamed Akbari
title Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging
title_short Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging
title_full Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging
title_fullStr Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging
title_full_unstemmed Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging
title_sort quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced mr imaging
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/f3997d4247b045488e4da9cb506d56e2
work_keys_str_mv AT hamedakbari quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT anahitafathikazerooni quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT jeffreybware quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT elizabethmamourian quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT hannahanderson quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT samanthaguiry quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT chiharusako quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT catalinaraymond quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT jingwenyao quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT stevenbrem quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT donaldmorourke quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT aratisdesai quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT stephenjbagley quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT benjaminmellingson quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT christosdavatzikos quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
AT alinabavizadeh quantificationoftumormicroenvironmentacidityinglioblastomausingprincipalcomponentanalysisofdynamicsusceptibilitycontrastenhancedmrimaging
_version_ 1718384090289274880